Scientific Problem Solving
One tool that every founder and VC needs to be fundable.
We’ve spent quite a bit of time focused on the “Venture” part of “Venture Science”, but I’d like to take some time today for a brief foray into a system for problem solving.
Throughout my education in both physics and chemical engineering, I heavily relied on the system of scientific problem solving to provide clarity of thought to complex problems.1
Let’s Break it Down.
The whole methodology is quite simple when looked at from afar. It consists of three questions, asked in this specific order:
What do I want?
What do I have?
How do I connect the two?
Start With the End in Mind - What Do I Want?
We start by clearly stating what the specific problem is asking of us. It’s so simple, but most people miss this first step and end up meandering off without direction.
By first asking ourselves this question we can get highly specific in what we’re looking for, and it begins the process of our brain trying to solve backwards.
For example, if I want to know how much I should value my company at, I can first define valuation as being ARR x Multiplier.
What do I have?
Now that we’ve analyzed where we’re trying to go, we can look at what we have available to us.
What has been defined or specified? Do we have any starting values, or various equations that we know of that can be of use?
Here we can again narrow down the potential solution space by focusing in on what relevant materials we can use to solve our problem.
The Fun Part - How do we get there?
Here we let creativity reign as we look for ways to connect what we have to what we want. Along the way we might find gaps - maybe there’s a conversion rate we don’t know, or maybe we need to call up a friend who can give us more info on a question.
This is how we conduct the necessary research to bridge the gap between our current knowledge and our future understanding.
Where to Use This?
Finding the right types of problems to use this approach may be tricky. Problems that are more linear, or close-ended in nature are best fit for this approach. For example:
If I have a 5% success rate in closing deals - how many leads do I need to reach out to?
If my company has 6 months of runway left - what’s the best route to achieve financial stability in the short term?
If 60% VC-backed startups are successful in achieving an exit - with an average VC fund returning 25% on the LP investment. What is the average startup exit return?
It’s Recursive!
Is the problem you’re trying to solve just way too big? No problem! First, go through questions 1 and 2.
Then, during your “how do I get there” question, try to identify a problem that, when solved, will get you incrementally closer to your desired solution.
Use the scientific problem solving system on your smaller problems until you can get connected.
In Summary
When approaching very complex problems that seem insurmountable - I often use this framework to break them down into meaningful chunks.
The scientific problem solving system allows my mind to organize necessary components of a problem into manageable chunks.
Start by asking yourself “Where is it that I want to go?”
Follow up by asking yourself “What do I have that can be helpful to get to my desired end result?”
And finally connect the dots by asking “How do I get there?”
Try to use this on the next complex problem you’re confronted with, and you may be surprised at how effective you are in solving it, and your ability to explain your solution to others.
❓Problem Solving Practice
Apply this methodology and framework to a simple problem. If you need a science-y type problem try the one below:
Company A currently has 30 paying customers, but is growing at a rate of 10% Month over Month. How many customers will Company A have in a year?
A note on using this approach:
Finding the right types of problems to use this approach may be tricky. Problems that are more linear, or close-ended in nature would be best fit for this.
For example “What is the valuation of my SAAS startup” could be a good analytical problem to use this approach on. You can conduct research on valuations and come up with the necessary equations and starting values to solve it.
A question like “What career path should I follow” may not be the best place to use this approach, but I will say with more practice and expertise you can definitely learn to apply it effectively.


